Note on convergence tests for series and on Stieltjes integration by parts
نویسندگان
چکیده
منابع مشابه
A Note on the Convergence of Random Riemann and Riemann-Stieltjes Sums to the Integral
Convergence in probability of random Riemann sums of a Lebesgue integrable function on [0, 1) to the integral has been proved. In this article we generalize the result to an abstract probability space under some natural conditions and we show L1convergence rather than convergence in probability..
متن کاملA note on “Convergence rates and asymptotic normality for series estimators”: uniform convergence rates
This paper establishes improved uniform convergence rates for series estimators. Series estimators are least-squares fits of a regression function where the number of regressors depends on sample size. I will specialize my results to the cases of polynomials and regression splines. These results improve upon results obtained earlier by Newey, yet fail to attain the optimal rates of convergence....
متن کاملthe effects of cognitive strategies- note making and underlining- on iranian efl learners’ reading comprehension
هدف از انجام این مطالعه ، بررسی اثرات استفاده از استراتژی های شناختی یعنی "نت برداری" و "زیر خط کردن" بر روی عملکرد درک مطلب زبان آموزان ایرانی می باشد. به این منظور، 60 زبان آموز دختر سال چهارم دبیرستان از طریق آزمون پیشرفت زبان انگلیسی (نلسون)، از یک جامعه آماری بزرگتر انتخاب شدند. سپس به صورت تصادفی به سه گروه که هر گروه شامل ?0 دانش آموز همسان بود، تقسیم شدند: دو گروه آزمایش(گروه "نت برداری...
15 صفحه اولon semihypergroups and hypergroups
in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...
15 صفحه اولA note on partitions into distinct parts and odd parts
Bousquet-Mélou and Eriksson showed that the number of partitions of n into distinct parts whose alternating sum is k is equal to the number of partitions of n into k odd parts, which is a refinement of a well-known result by Euler. We give a different graphical interpretation of the bijection by Sylvester on partitions into distinct parts and partitions into odd parts, and show that the bijecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1919
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1919-03270-4